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ABSTRACT 

  

In this paper, we analyze the Kappa performance measures of portfolio returns having 

Johnson distributions. Kappa performance measures are based on downside risk 

measures, which better allows evaluating risk and performance of complex returns such 

as those of hedge funds. These measures take account of the whole return distribution. 

We illustrate how they evolve according to the four basic parameters of the Johnson 

distributions. 
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I. INTRODUCTION 

 

The empirical analysis of hedge fund returns has shown that the mean-variance approach 

is not adequate to study the risk and performance of these funds. Using monthly data, 

Fung and Hsieh (1997), Brooks and Kat (2001), Amenc et al. (2002, 2003) demonstrate 

that distributions of hedge funds returns have a negative skewness and an excess kurtosis. 

This leads to conclude that, for this type of fund, the challenge lies not only in the first 

two moments but also in higher moments. In this context, the selection of a family of 

distributions with sufficient flexibility to take account of the asymmetry and the kurtosis 

is necessary to study the behaviour of hedge funds returns. The Johnson distribution 

system (1949) satisfies this requirement. As mentioned in Passow (2004), this family of 

probability distributions can calibrate independently the four first moments, “while 

disregarding potentially insignificant moments of order higher than 5.” The introduction 

of Johnson distributions allows covering up to fourth-order moment patterns of (Log-) 

Normal, (2-sided) Student t and Weibull distributions. The family of Edgeworth 

expansions and twelve different types of Pearson distributions are also included. Note 

that these latter distributions include 1st and 2nd kind Beta and Gamma distributions. 

This is the reason why Johnson distributions can actually model the specific moment 

patterns. 

Since 2000, portfolio management theory has been based in particular on 

downside risk measures. In line with Basel II accords for banking regulations, these latter 

ones are related to determination of economical capital allocation (see Goovaerts et al., 

2002). As illustrated also by Jarrow and Zhao (2006), there exist significant differences 

between mean-variance optimal portfolios and those based on lower partial moments, 

when asset returns are far from being Gaussian. 

The literature about financial risk and performance measurement has increased 

continuously. The first and basic performance measures for asset management are the 

Sharpe's ratio, the Treynor's ratio and the Jensen's Alpha. However, we must often deal 

with asymmetric return distributions having also fat tails. Consequently, it is necessary to 

introduce performance measures that are usually based on “reward/risk” ratios. 

Additionally, these risk measures must involve the whole return distribution, in particular 

the probabilities to get significant negative returns. For this purpose, downside risk 

measures have been introduced (see e.g. Pedersen and Satchell, 1998; Artzner et al., 

1999; Szegö, 2002).
1
 Then, using the downside lower partial moment, Keating and 

Shadwick (2002) define a new performance measure, called the Omega measure. This 

performance measure is based on a gain-loss approach. It takes account of investor loss 

aversion, as in Tversky and Kahneman (1992). This performance measure is defined as 

the ratio of the expectation of gains above the threshold and the expectation of losses 

below the threshold. Farinelli and Tibiletti (2008) and Zakamouline and Koekebakker 

(2009) introduce generalized Sharpe ratios to evaluate portfolio performance. As proved 

by Pedersen and Satchell (1998, 2002), the Sortino ratio (which corresponds to Kappa 

(2)) is linked to utility function with lower risk aversion. Zakamouline (2010) generalizes 

this result by showing that Kappa measures correspond to performance measures 

associated to piecewise linear plus power utility functions. Kappa (n) measures have 

been used to examine performance of a large class of financial models, in particular to 

deal with hedge fund style or structured equity funds (see Bertand and Prigent, 2011). We 

examine how these measures behave according to the parameters of Johnson 
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distributions. 

This paper is organized as follows. Section II provides general results about 

Kappa performance measures. Section III is a survey about Johnson distributions. We 

also develop an empirical illustration of such probability distributions and illustrate in 

particular the relationship between their four parameters and their four moments. Section 

IV shows how the Kappa measures depend on these four parameters. Such results can 

potentially be applied to examine what hedge fund returns can yield to the best Kappa 

ranking. Section V provides numerical illustrations. Section VI contents the main 

conclusions. 

     

II. THE KAPPA PERFORMANCE MEASURES 

 

A. Definition and General Properties 

  

As mentioned by Unser (2002), individuals are often only interested in an evaluation of 

outcomes which have values smaller than a given target.
2
 This feature yields to introduce 

downside risk measures (see, e.g. Ebert, 2005).   

The Kappa measures, introduced by Kaplan and Knowles (2004), are defined by: 

for l=1,2,..., 
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For l=1, we get the Sharpe Omega measure and, for l=2, it is the Sortino ratio. 

Zakamouline (2010) shows that Kappa measures correspond to performance measures 

based on piecewise linear plus power utility functions. Indeed, consider the following 

utility function: 
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with Ф>1 and n a nonzero integer. Then, the investor's capital allocation problem, 

examined by Zakamouline (2010) yields to the following utility of the optimal allocation: 
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Since  *

LE U V  
is an increasing transformation of the Kappa (n) ratio, this latter one is 

actually based on the utility 
LU  

 Remark 1 Note that 
LU  is convex on [, L] if and only if n=1. This case 

corresponds to the Omega measure, obtained as a limiting case when n1. Thus, the 

Omega measure is related to the maximization of an expected utility with loss aversion, 

as introduced by Tversky and Kahneman (1992). 
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B. A Special Case: The Omega Ratio 
 

Keating and Shadwick (2002) and Cascon et al. (2003) have introduced the Omega 

performance measure to take the whole return distribution into account, without 

requiring any parametric assumption on the return distribution. Omega is defined as the 

probability weighted ratio of gains to losses relative to a return threshold. It is given by: 
 

 
  

 
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b
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where  .F  is the cumulative distribution function of the asset return X defined on the 

interval (a,b), with respect to the probability distribution P and L is the return threshold 

selected by the investor. Returns below this threshold are considered as losses and returns 

above as gains. At a given return threshold, the investor should always prefer the 

portfolio with the highest Omega value. The Omega function can be written as (see 

Kazemi et al., 2004): 
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It is the ratio of the expectations of gains above the threshold L to the expectations 

of the losses below the threshold L.
3
  Kazemi et al. (2004) introduce also the Sharpe 

Omega measure as: 
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Note that, if   ,PE X L the Sharpe Omega will be negative, otherwise it will be 

positive.    If ,  then 1,P XL E X L    where (.)X is a monotone decreasing 

function. (.) (.)X Y  if and only if .X YF F  The level of threshold must be specified 

according to investment objective and individual risk aversion. 
 

III.      THE JOHNSON DISTRIBUTIONS 
 

A. Definition 
 

The Johnson system covers three main families of distributions that can model a wide 

variety of empirical distributions. Given a continuous random variable X, X has a 

Johnson distribution if there exists a monotonic function g such that: 
 

; 0; 0.
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where Z is a standard normal random variable, and γ,δ,ξ,λ are given parameters.  
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Usually γ and δ correspond to trend parameters, ξ is a positional parameter and 

finally λ corresponds to a scaling parameter. In our case, X denotes financial asset 

returns,
4
 specifically hedge funds. 

Notation: We introduce the function h and its inverse by setting: 
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The function g (.) is generally one of the three following functions defined by: 

 

- Lognormal distribution       S  :  g y ln y ,L   
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The SU distribution is unbounded in both directions while the SB distribution is 

bounded in both directions (ξ,ξ+λ).The Johnson SU distribution is most interesting 

because its support is the set of real numbers. In addition, it offers, by the number of 

parameters characterizing a wide class of asymmetries and flattening.  

This distribution can model a large number of financial products. Therefore, in 

what follows, we focus in mainly on this distribution. 

The Johnson probability density function (pdf) 
Xf  of SU distribution is easily 

deduced from standard normal distribution. It is given by canonical transformations of 

the standard Gauss distribution: 
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When using Johnson distributions, we can for example search for one of the main 

Johnson distributions. Therefore, in that case, the first step is to determine which of the 

three families would be used. The second step is to estimate the parameters of this 

distribution.  

We can also determine the best function g, using a non parametric approach. In 

that latter case, function g may no longer belong to one of the three basic families (for 

more details on methods to estimate parameters of Johnson distribution see Naguez and 

Prigent, 2010). 
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B. Four First Moments 
 

For the distribution SU, the first four moments of the reduced and centered random Y are 

given by: 
1
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


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We note that the third and fourth moments depend on parameters γ and δ. In the 

financial context, this flexibility is interesting because this distribution can be used to 

model returns asymmetric or fat tail distributions. However, to model returns that follow 

Johnson distribution, we need to study how the moments of this distribution depends on 

its four parameters. 
 

C. Variations of the Four Moments w.r.t. the Parameters 

 

In this section, we study the variations of the four first moments of the distribution SU 

according to the four parameters.  

We simulate returns that follow a Johnson SU distribution while changing parameter 

values for each simulation, in order to observe the variation of moments with respect to 

the variation of those parameters.  

We study such modifications of moments according to the parameters since it allows us 

in a second step to study how the Kappa measures vary as function of the moments (via 

implicitly the parameters). 

Equations (1) show that the mean depends on all the parameters. The standard 

deviation depends on γ, δ, and λ. The skewness and kurtosis depend only on the 

parameters γ and δ. The sign of the skewness is the opposite of the sign of parameter γ.  

We also study the variations of the higher moments where the mean and the 

standard deviation are fixed. 

Figure 1 shows that skewness decreases with γ. It increases also with δ if γ is 

negative and increases if γ is positive. The kurtosis is an increasing function of δ and of 

negative values of γ. It is decreasing with respect to positive values of γ.  

These observations allow us to conclude that for given expected return and 

standard deviation, the two higher moments reach their respective maxima by 

minimizing γ and δ since they simultaneously provide the highest level of skewness and 

the highest level of kurtosis, a situation that does prefer the investor. 
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Figure 1 

Variations of the skewness and kurtosis w.r.t. δ and γ 
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Figure 2 

Variations of mean and standard deviation w.r.t. δ and γ 
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We also study the variations of the mean and standard deviation according to the 

parameters γ and δ with parameters ξ and λ fixed. Figure 2 shows that the mean is a 

decreasing function with respect to γ. It also decreases w.r.t. δ if γ is negative but 

increases if γ is positive. The standard deviation increases w.r.t. δ and positive values of γ 

but increases w.r.t. negative values of γ. From these observations, we can conclude that 

the worst case for an investor corresponds to simultaneous high value of γ and low value 

of δ. 

 

IV.     KAPPPA MEASURES AND JOHNSON DISTRIBUTIONS 

 

To study how Kappa performance measures vary according to the four moments of 

Johnson distribution, we have examined the variation of the first four moments within the 

Johnson parameters (see previous section). This allows illustrating how moments behave 

according to parameter variations. Then, in a second step, we study now how Kappa 

performance measures vary according to the Johnson parameters. Therefore, we deduce 

simultaneously how Kappa measures depend on the four first moments.  

We consider that the return on the risky asset follows a Johnson distribution SU. 

Therefore, Kappa performance measures are given by: 
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Note that closed-form representations of Omega with all Johnson type 

distributions (including the important bounded Johnson type) have been derived by 

Passow (2004). However, for more general Kappa measures, no explicit solution is 

known. 

 

V. NUMERICAL ILLUSTRATIONS 

 

We study the variation of Kappa measures w.r.t. Johnson parameters which allows us to 

show the evolution of these measures w.r.t. the first four moments of this distribution. 

First, we study the variation of Kappa measures according to the four parameters of 

Johnson distribution. We find that Kappa measures are sensitive to all parameters. 

Referring to the results of Section III, we can observe that the four moments affect 

significantly the magnitude and the sense of variation measures Kappa, especially for 

lower values of the order k. 

Then, we examine the variation of Kappa measures within the parameters 

δ and γ where the mean and standard deviations are fixed.  

 

 

Figure 3 

Variations of Kappa for fixed mean and standard deviation 
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Figure 3 shows that all Kappa ratios decrease with γ. The evolution w.r.t 

parameter δ varies from one ratio to another. Indeed, the Sharpe Omega ratio is a 

decreasing function of δ, the Sortino ratio is an even function which grows to a certain 

level and then begins to decline.  

The Kappa (3) ratio increases and then from a certain level begins to decrease, 

while the Kappa (4) ratio is an increasing function of δ.  This implies that Kappa 

measures are increasing functions of the skewness whatever its sign and also increasing 

w.r.t kurtosis if the skewness is positive.  

This is rational because the investment can achieve high performance if the 

distribution of returns favors the realization of positive returns with a high probability of 

very high returns. 

We also study the variation of Kappa Measures w.r.t γ and δ for fixed  and . 

This allows us to determine the variation of Kappa w.r.t mean and standard variation. 

  
 

Figure 4 

Variations of Kappa for fixed  and  
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Figure 4 shows that Kappa measures are increasing functions w.r.t. γ and δ. This 

implies that the performance always increases with the mean and standard deviation if 

the skewness is positive but is decreasing with standard deviation if skewness is negative. 
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VI. CONCLUSION 

 

In this paper, we illustrate how the important family of Kappa performance measures 

behaves according to the four parameters of Johnson distributions. We also examine their 

variations with respect to their four moments. This allows the link of the maximization of 

Kappa performance measures with decision criteria based on the first four moments of 

the return probability distribution. This is particularly useful when dealing with non 

Gaussian distributions, as for hedge fund returns. 

First, we show that Kappa measures always increase with the mean and standard 

deviation if the skewness is positive but are decreasing with standard deviation if 

skewness is negative; second we show that they are increasing functions of the skewness 

whatever its sign and also increasing w.r.t kurtosis if the skewness is positive. Therefore, 

for Johnson distributions, maximising Kappa measures would be prefer to maximize a 

combination of the first four moments since Kappa measures take better account of the 

"good" behaviour of the distribution (i.e. positive skewness). 

 

ENDNOTES 

 

1. Note that they are linked to the measures proposed by Fishburn (1977, 1984). 

2. For example, interest rates, returns of benchmark financial indices, etc. 

3. As noted by Kazemi et al. (2004), Omega can be considered as the ratio of the prices 

of a call option to a put option written on X with strike price L but both evaluated 

under the historical probability P. 

4. X can denote log return depending on the type of Johnson distribution. 
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