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ABSTRACT 

 

We propose an extension of the CPPI method, which is based on conditional floors. In 

this framework, we examine in particular the margin based strategies. This method 

allows to keep part of the past gains and to protect the portfolio value against future 

high drawdowns of the financial market. However, as for the standard CPPI method, 

the investor can benefit from potential market rises. To control the risk of such 

strategies, we introduce the Value-at-Risk (VaR) as risk measure. We show that the 

conditional floor must be higher than a lower bound. We illustrate these results, for a 

quite general ARCH type model, including the Egarch(1,1) as a special case. 
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I. INTRODUCTION 

 

Portfolio insurance strategies allow the investor to control downside risk, while 

benefiting from market rises. The two main methods of portfolio insurance are: the 

OBPI (Option Based Portfolio Insurance) introduced by Leland and Rubinstein (1976); 

the CPPI (Constant Proportion Portfolio Insurance) proposed by Perold (1986)
1
 and 

further developed by Black and Jones (1987) for equity instruments and Perold (1986, 

1988) for fixed-income instruments.
2
 The CPPI strategy is based on a dynamic portfolio 

allocation on two basic assets: a riskless asset (usually a treasury bill) and a risky asset 

(a financial stock index for example). This strategy depends crucially on the cushion C, 

which is defined as the difference between the portfolio value V and the floor P. This 

later one corresponds to a guaranteed amount at any time t of the portfolio management 

period [0,T]. The key assumption is that the amount invested on the risky asset, called 

the exposure and denoted by e, is equal at any time to the cushion multiplied by a fixed 

coefficient m, called the multiple. The floor and the multiple can be determined 

according to the investor's risk tolerance. The higher the multiple, the more the investor 

will benefit from increases in stock prices. Nevertheless, the higher the multiple, the 

higher the risk that the portfolio value becomes smaller than the floor if the risky asset 

price drops suddenly. As the cushion value is approximately equal to zero, exposure is 

near zero too. In continuous-time, if asset dynamics have no jump, this keeps portfolio 

value from falling below the floor. The main advantages of this strategy, compared with 

other portfolio insurance methods, are its simplicity and its flexibility.
3
 However, 

during financial crises, a very sharp drop in the market may occur before the manager 

can rebalance the portfolio. 

Several extensions of the standard CPPI method can be proposed to improve for 

instance the guarantee robustness: (1) introduction of a conditional multiple depending 

on the market evolution; and (2) possibility of increasing the floor according to market 

conditions (ratchet effect, for example, introduced by Boulier and Kanniganti, 2005). 

The main objective of this paper is to present and to analyze various CPPI type 

methods based on conditional floors and within a rather general parametric model. In 

this model, the floor can be modified according to market fluctuations and portfolio 

management goals. These extensions allow the investor to make profit from market 

performance, while for example keeping part of past gains. In that case, an additional 

portfolio protection is provided. Floor reappraisal allows also better flexibility for CPPI 

portfolio management. Our approach is based on quantile conditions. Additionally, we 

do not assume that all risky returns are i.i.d., but we introduce general Arch type 

models, in particular GARCH type models. We look at the guarantee and performance 

of the CPPI portfolio for a constant multiple. We compare this model to the standard 

CPPI method for different values of the multiple. 

The paper is organized as follows. Section II provides a brief overview of main 

properties of the CPPI method in discrete time. Section III deals with conditional floors 

and risk management of such portfolios. In Section IV, we analyze various CPPI 

strategies based on conditional floors through simulations and estimations of the S&P 

500, from December 2005 to December 2010. Section V provides numerical 

illustrations. Finally, Section VI contains the main conclusions. 
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II.     THE CPPI METHOD IN DISCRETE TIME 

 

To reduce transaction costs or because of the nature of the funds, investors in the 

market can choose to trade at predetermined dates. The constant proportion portfolio 

insurance strategy is based on allocation among two financial assets: a riskless asset, 

denoted by B, which allows a cash reserve (riskless interest rate denoted by r); a risky 

asset, denoted by S, which is usually a stock index. The strategies are self-financing. 

We suppose that rebalancing times are "discrete" along the whole management period 

[0,T]. 

The risky asset S evolves according to: 
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ktX denotes the opposite of the arithmetical returns: 

 

k

1kk

k

1k

1k
t

tt

t

t
t

S

SS

S

S
X 







  

 

Denote by 
ktV the portfolio value at time kt . As a portfolio insurance method, the 

CPPI strategy must satisfy the two following conditions: (see Poncet and Portait, 1997) 
 

 The portfolio value must be higher than a guaranteed amount. 

 The investor must benefit partly from market rises. 
 

For these two purposes, the standard CPPI method is based on: 
 

 The choice of a deterministic floor
ktP : at any time kt , the value 

ktV must be 

higher than 
ktP that represents the guaranteed amount. 

  The choice of a dynamic investment on the risky asset defined as follows: the 

total amount 
kte (called "the exposure") invested on the underlying asset 

ktS is equal to 

ktmC , where the cushion 
ktC is equal to the difference between the portfolio value 

ktV  

and the floor 
ktP : 

kkk ttt PVC 
 

 

The higher the multiple m, the higher the amount etk invested on the risky asset. 

Therefore, an “aggressive” investor would choose high values for m. Nevertheless, in 

that case, his portfolio is riskier and, as shown in what follows, his guarantee may no 

longer hold. 

The value of the floor gives the dynamically insured amount. It is assumed to 

evolve according to: 
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We deduce that the portfolio value is solution of: 
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Therefore, the cushion is given by: 
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In fact, since 
kt

r is relatively small and the time period is usually short, the 

previous inequality yields to the following relation: 
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Denote by 
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 the previous return:  
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From this relation we can determine an upper bound on the multiple.  

 

Proposition 1.  The guarantee 0
kt

C   is satisfied at any time kt  of the management 

period with a probability equal to 1 if and only if: 
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If the right end point d of the common distribution F of the variables 
kt

X  is positive, 

the insurance is perfect along any period [0,T] if and only if m is smaller than (1/d). 

 

Many studies have focused on the determination of the multiple m. When the 

multiple is assumed to be constant, quantile conditions have been introduced to control 

the probability that the portfolio value is smaller than the floor
4
 for a given probability 

threshold ε. Hamidi et al. (2009) consider a modified quantile hedging strategy where 

the multiple is conditional. In what follows, we examine extensions of the CPPI 

method, when the floor is conditional as suggested by Boulier and Kanniganti (2005). 

 

III.   CONDITIONAL FLOOR 

 

In practice, portfolio managers do not rebalance their portfolios in continuous time. 

Their market timing can be based on fixed transaction times (usually, each month) or 

driven by market events. 

  For the CPPI strategy, the risk corresponds to sudden financial drops involving 

negative cushion values. A conditional floor can potentially provide an additional 

portfolio protection, such as the TIPP strategy. It can also better take account of market 

fluctuations. 

Several extensions have been used to minimize this gap risk. In what follows, we 

present a general model with conditional floor, based on quantile conditions. We 

assume that the risky asset logreturn follows a quite general Arch type model. 

 

A. The Financial Model 
 

We introduce the following notations and assumptions: 
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 
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where 
ktP represents the variation of the floor at time kt  due to the specific choice of 

the floor.
 

- The value 
ktP  is equal to the previous floor value chosen at time 

1kt 
 for the 

period  k,1k tt 
 and invested on the riskless asset during this time period: 
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- The value 
tkP  is chosen at time kt  in order to satisfy the portfolio management 

objectives at that time. In the same way, we define the variations of the cushion at 

time kt : 

 
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We deduce the portfolio value dynamics:
5
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We also assume as usual that the time scale is equal to 1/T and that  rr
kt . We have: 
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In what follows, we assume that the logreturn Y of the risky asset S follows a general 

GARCH(p,q) model.
6
 The logreturn Y satisfies: 
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The GARCH model is defined as follows. Consider the system of auto regressive 

equations: 
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where k denotes the volatility, the sequence  
ktk

 is i.i.d. with common pdf 0f  and 

Λ, C₀ (.), and C₁ (.) are deterministic functions. The function Λ: ℝ⁺→ℝ is assumed to 

be strictly increasing. 

The information 
1ktF


at time 1kt  delivered by the observation of risky asset 

returns is generated by the sequence  
ktt 1k1

,,


   . 
 

 

B. The Quantile Conditions 
 

For an investment period  T,0 , the financial market volatility can have several phases 

(high or low regimes). It is interesting to can adapt the value of the CPPI hedging 
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parameters to these several phases. Thus, in this paper we determine a floor that is 

subject to market conditions. The aim of this approach is to divide the time 

management period into several sub-periods and calibrate the floor to the market 

fluctuations. To meet this objective, we introduce the following risk control conditions, 

which correspond to various "local" quantile conditions: 

 

 0A  :
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ktF and the random event  .0C,.....,0C
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Proposition 2. The previous local quantile conditions imply the following global 

quantile: 
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IV.  CONDITIONAL FLOOR UNDER VAR CONSTRAINT 

 

A. The General Model Based on Quantile Condition 

 

We suppose that the floor can be modified at any time kt , since the portfolio is 

rebalanced in discrete time. The multiple m is assumed to be constant over time. We 

consider the “local” quantile condition
7
 LA , with L>0 to revaluate a floor:   
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We get a characterization of the quantile condition LA .
8
 

 

Proposition 3. The quantile condition LA  is equivalent to the following conditions on 

the conditional floor: 
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Remark. The previous proposition provides a lower bound on the floor at any 

time of the management period. This is in accordance to portfolio insurance. Indeed, the 

higher the floor, the lower the cushion and the exposure to risky asset. 
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We can interpret previous condition on the conditional floor by using the 

variation
kt

p , which corresponds to the change imposed on the floor at each time kt .  
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1kt



, then we have: .P

L
VPP

k

1k

kkk
t

t
ttt

 






 

Thus, .
L

CPand
L

PVP

1k

kk

1k

kkk
t

tt
t

ttt







 

 
 

 If 0
1kt



, the floor evolves according to the risk-free rate:  
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At each time where the constraint 0
1kt



 is met, we anticipate that the market 

will go down, which may induce that the portfolio value becomes smaller than the 

floor. Then, the change we impose on the conditional floor will imply to increase it, by 

selling risky assets and buying riskless asset. Within this model, we keep past gains. In 

the following figures, we illustrate a path of portfolio return and its conditional 

volatility according to Garch process. We show how the ratio
1kt

L


 can evolve for the 

same path during one year and for daily rebalancing. At each time, the value of 

1kt 
 depends on the multiple m, on the probability level ε, on the conditional market 

volatility, and on the threshold of loss that we have imposed. In this section, we obtain 

a general model for a floor revaluation. Within this model, we conduct revaluation at 

each rebalancing time to limit exposure. We propose to combine this model based on 

quantile condition with CPPI strategies based on floor revaluation. For example, we can 

consider the model of the margin or the model of floor revaluation depending of the 

portfolio performance previously detailed. In next section, we examine main properties 

of such models. 
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Figure 1 

Ratio value for several multiple and threshold values 
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B. Floor Revaluation within the Margin Strategy  
 

This model is associated to a speculative strategy of portfolio management. Indeed, by 

reducing the margin, we want to increase portfolio exposure to capture any increase in 

the market. We start from the general result:  
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In the original case of the margin introduced by Boulier and Kanniganti (2005), 

this proportion is assumed to be constant. This assumption allows the portfolio to not 

remain sticking to the floor. In this framework, this proportion is variable and based on 
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the quantile condition depending on the values of several variables m, L, 
ktC and 0P̂ at 

each time. 

 

Figure 2 

Margin case 
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The use of the margin model can limit the revaluations for cases where exposure 

is too small. This property allows the portfolio value to take advantage of market rises. 

 

V.     NUMERICAL ILLUSTRATIONS 

 

A. The Conditional Volatility Model 

 

Many previous studies have shown the importance of the asymmetric model Garch to 

estimate the conditional volatility. The asymmetric Garch implies that negative chocks 

induce greater volatility than positive chocks. Poon and Granger (2003) have analyzed 

and compared several Garch type models. They conclude that, in general, the 

asymmetric volatility performs better than Garch. Heynen et al. (1994) conclude that 

exponential Garch provides the best description of asset prices according to the Akaike 

information criterion. Chen et al. (2002) test several model to determine the conditional 

volatility. According to the modified CCK test of Chen (2001), this test can detect 

asymmetric volatility. Only the Egarch model is accepted for several index prices. 

Engel and Ng (1993) have shown that the model Egarch can capture most of the 

asymmetry of the time series but the model presents high conditional variance. 

Awartani and Corradi (2005) study the daily observation of S&P 500 composite index. 

They conclude that the asymmetric model Garch gives the best estimation and can 

capture the leverage effect. From previous empirical observations, we consider the 

Egarch (1,1) model with parameter values such as in Nelson (1991). 
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where th  is the conditional volatility and with 
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We use this model to estimate and simulate the conditional volatility. 

 

B. The CPPI Margin Strategy under VaR Criterion 

 

In what follows, we illustrate the empirical distribution functions of the portfolio value 

for a horizon T=5 years, and for several parameter values of the model. There is no 

stochastic dominance at the first order. With this model, we get higher performances 

than for the general model. Because revaluations are subject to market conditions, the 

choice of the parameters L, α and of the multiple m depends on risk aversion of each 

investor. For 0C%1L  , we have fixed a binding threshold. On the interval [90,105], this 

model behaves better than the other ones with less restriction. On the interval 

[105,200], the other models have better performances. For the other parameters m and 

α, we conclude in the same manner. Then, there exists a trade-off between the 

maximization of the gains and the minimization of the risk. In Figure 3, we provide a 

comparison between the margin case with proportion depending on the market 

condition that we call *  and another margin case with constant proportion. For * we 

take less risk than for other CPPI models. We note that the CPPI margin strategy yields 

to better results than an unconditional . 

 
 

Figure 3 

Empirical CDF for margin case under VaR criterion 
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C. Back Testing Model from S&P 500 Data 

 

We estimate the conditional volatility from the Egarch(1,1). In the previous section, we 

have developed the choice criteria. We choose a very volatile period to test the models: 

from 12/2005 to 12/2010. We adopt a weekly portfolio rebalancing. In the next graphs, 

we compare the revaluation floor for the margin case with conditional quantile and 

expected shortfall criterion to the margin case with fixed proportion and to the standard 

CPPI model. The margin case is part of speculative strategy of the portfolio insurance, 

where we adopt an aggressive exposure. However, if the market is bearish, we suffer 

from large losses. In practice, this strategy is used to avoid finishing with a monetized 

portfolio. For the margin case with a conditional quantile, market volatility, values of 

the portfolio and cushion are decisive criteria to select the proportion of the margin to 

be played again. Interest of this model is that the proportion is not fixed arbitrarily. 

Beginning the management period with stable market, the proportion determined by the 

model is high, thus achieving better performance than the margin models with fixed 

proportion. But this strategy has suffered from higher losses at the end of period. The 

comparison with standard CPPI shows that this speculative strategy allows better 

performance than the other models, when the market is bullish. At the end of the period, 

we take more risk to boost the portfolio by reducing the floor. 

 

Figure 4 

Back-testing for the margin case: M₀=8, initial floor 90P
0t
  and m=6. 
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VI.      CONCLUSION 

 

We have proposed an extension of the CPPI method based on local quantile conditions: 

a model of floor revaluation depending on the market performance and on stock price 

volatility. This approach allows guaranteeing the portfolio against a potential high 

volatility market. We have provided an explicit model of portfolio management, which 

can be easily implemented. It is also possible to involve other state variables. To take 

the dependence of the yields on the market into account, we have simulated and 

estimated an asymmetric EGARCH(1,1) model for the conditional volatility and the 

weekly log-returns. The rebalancing times take place in discrete time. Then, we have 

compared this model to some standard CPPI models. Before the financial crisis period, 

margin case portfolio with proportion depending on market volatility performs better 

than all other models. But, during the crisis, this portfolio falls below the original floor. 
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The difference between the maximum yields for the two strategies is due to the 

insurance cost for revaluation strategy depending on portfolio performance. To test our 

model, we have generated yield paths from Arch type models. However, other 

processes can be introduced, for example diffusion processes with jumps. 

 

ENDNOTES 

 

1. See Poncet and Portait (1997), Prigent (2007) for more details on these methods. 

2. See also Black and Rouhani (1989), Black and Perold (1992). 

3. See de Vitry and Moulin (1994), Black and Rouhani (1987) and Boulier and 

Sikorav (1992). 

4. See Prigent (2001) in the Lévy process case and Bertrand and Prigent (2002), using 

extreme value theory. 

5. We suppose that transaction costs are relatively small, so that they can be 

neglected. 

6. The ARCH (Autoregressive Conditionally Heteroscedastic) models, introduced by 

Engle (1982), are specific non-linear time series models. They can describe quite 

exhaustive set of risky asset dynamics. They have been widely applied in financial 

modeling and statistical theory. 

7. L is a level guaranteed. It may have several forms. We can take a constant 

proportion of the initial cushion value (V₀-P₀). Alternatively, we can introduce a 

variable proportion 
ktq of the current cushion value  

kk tt PV . 

8. See Ben Ameur (2009 for detailed proof. 
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