
INTERNATIONAL JOURNAL OF BUSINESS, 5(2), 2000                          ISSN:1083-4346 

Variation and Covariation between Market 
Timing and Selectivity: an Alternative to 

Traditional Meta-analysis 
 
 

Sydney D. Howella and Manuel J. Rocha Armadab 
a Manchester Business School, Manchester, England 

b School of Economics and Management, University of Minho, Braga, Portugal 
 
 

ABSTRACT 
 
In traditional meta-analysis of variance, using either Henriksson-
Merton coefficients or Pfleiderer & Bhattacharya coefficients, both 
timing and selectivity show variation. Both models give similar 
estimates of the true selectivity variance. A new method of analysis 
exploits the fact (earlier ignored) that the selectivity and timing 
estimates are negatively correlated, due to measurement error and to 
correlated independents. This permits an estimate of the measurement 
error, and hence of the true variation. The new method implies that 
both the selectivity and the timing variance may not differ significantly 
from zero. 
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I.   INTRODUCTION 
 

Correlation between estimates of timing and selectivity, and the true 
variability of timing and selectivity, have attracted interest recently. The 
concepts are, we argue, related. Coggin [5] show that selectivity and 
timing are negatively correlated for several categories of US fund 
managers, using both the Treynor [21] model and the Pfleiderer [17] 
model. Coggin [5] used the latter model in a form due to Coggin [6], 
that permits timing ability to be estimated as negative, a possibility 
rejected by earlier researchers. Coggin [6] show that negative correlation 
of Pfleiderer [17] estimates in the new form is equivalent to the positive 
correlation found when Lee [14] used the Pfleiderer [17] model in its 
original form. Coggin [5] argue that "the observed negative correlation 
in our data is largely an artifact of negatively correlated sampling errors 
for our two estimates", and that "much work needs to be done" on both 
the artefactual and substantive nature of these and other results. The 
Coggin [5] study, like many others, suggests that selectivity is on 
average positive, but timing ability is negative, in US markets. 

Coggin [5] tried to estimate the true underlying variation of 
selectivity and timing by performing traditional meta-analysis on 
estimates from the revised Pfleiderer [17] model. Traditional meta-
analysis compares the variation of parameter estimates between 
different studies, with the weighted average of their calculated 
confidence intervals within each individual study. The weighted intra-
study confidence interval is taken to represent measurement error. 
Variation of parameter estimates between different studies that falls 
outside this confidence interval is taken to be real variation of the 
parameter, although Coggin [6] note that alternative explanations 
include "other unaccounted for artifacts". Coggin [5] and Coggin [6] 
conclude that there is significant real variation between managers, in 
both selectivity and timing ability, as measured by the Pfleiderer [17] 
and Treynor [21] models, so that "the best investors produced 
substantial risk adjusted excess returns". We show evidence that may 
weaken this conclusion. 

The traditional meta-analysis technique adjusts carefully for 
covariation between different estimates of the same parameter, but it 
ignores the known covariation between the estimates of different 
parameters. This procedure risks discarding statistical information, and 
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it also overstates the degrees of freedom available for estimating or 
testing each individual parameter. This paper argues that if negative 
covariation between the estimates of selectivity and timing is truly 
caused by measurement error, as Coggin [5] suggest, then the size of 
negative correlation must contain information about the size of the 
measurement error. In turn the size of the measurement error holds 
information about the "true" variation of the parameters. 

 
II.   OBJECTIVES OF THIS PAPER 

 
This paper tries to construct an alternative method to traditional meta-
analysis. The new method exploits the fact that measurement error can 
cause both variation and covariation of the selectivity and timing 
estimates. Hence the "true" variances can be inferred from the pattern of 
variance and covariance of the coefficients. Unlike traditional meta-
analysis, the new approach can estimate true parameter variation from 
three different types of data, namely inter-fund variance-covariances 
only, intra-fund variance-covariances only, and the traditional method 
of comparing these both levels. 

We compare traditional meta-analysis and the new method of 
analysis on estimates of selectivity and timing from the Henriksson [9] 
model (henceforward the Henriksson-Merton model). In this way we 
partly replicate and partly extend Coggin [5]'s traditional meta-analysis, 
which they applied to the Pfleiderer [17] model. We also replicate earlier 
work on the Treynor [21] model, the Henriksson [9] model and the 
original form of the Pfleiderer [17] model. We use a non US data set, 
which further extends the scope of previous studies, and we show that 
the Treynor [21], Pfleiderer [17] and Henriksson [9] models all behave 
similarly on US data and on UK data. 

The sequence of the paper is as follows: Section III describes our 
replication of earlier work on the Treynor [21], Pfleiderer [17] and 
Henriksson [9] models, and our extension of traditional meta-analysis to 
the Henriksson [9] model. Section IV describes the negative correlation 
of selectivity and timing in our Henriksson [9] estimates. Section V 
presents a theoretical method for exploiting the variation and 
covariation of parameter estimates to estimate true parameter variation, 
in the presence of measurement error and correlated regressors. Section 
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VI describes an empirical application. Section VII is a summary and 
discussion. 
 
III. ESTIMATES OF THE TREYNOR-MAZUY MODEL [21], THE 

HENRIKSSON-MERTON MODEL [9] AND THE PFLEIDERER- 
BHATTACHARYA MODEL [17] IN THE UK STOCK MARKET, 
PLUS META-ANALYSIS OF THE HENRIKSSON-MERTON 
PARAMETERS 

 
The general aim of this section is to show how closely US and UK data 
sets agree, and to detect some internal evidence against the findings of 
traditional meta-analysis on Henriksson [9] data. For three different 
models (Henriksson [9], Pfleiderer [17] and Treynor [21]), our UK data 
set gave similar estimates to one or more US data sets, and the 
differences between the parameter estimates from US and UK data sets 
are similar to those between different US data sets. 

We replicated Lee [14] by applying the original form of the 
Pfleiderer [17] model to the monthly returns of 141 UK unit trust funds, 
over a 144 month period from 1978 to 1990. We calculated both the GLS 
and OLS coefficients. The positive correlation between αp (selectivity) 
and ρ (timing), was 0.486 for GLS coefficients (0.504 for OLS). The 
former compares closely with the figure of 0.47 reported by Lee [14] 
using GLS coefficients from US data. Mean levels of selectivity and 
timing, for our heteroscedasticity corrected estimates, were respectively 
-0.0001 for selectivity (standard deviation 0.00239) and 0.0687 for timing 
(standard deviation 0.0557). These estimates are of the original 
Pfleiderer [17] model, which forces all timing to be positive. Lee [14] 
corresponding mean estimates were 0.0008 for selectivity and 0.1231 for 
timing, so the differences are not significant. 

Coggin [6] reanalysed the Lee [14] data, by allowing the Pfleiderer 
[17] model to estimate negative timing, and found after this adjustment 
that the same data implied negative correlation between selectivity and 
timing, estimated at -0.62 for the heteroscedasticity corrected 
coefficients, and -0.64 for the uncorrected coefficients. We have not 
replicated this adjustment for UK data, but we suspect that the UK 
correlation would be as close to the US correlation after adjustment as it 
was before. Coggin [5] applied the adjusted Pfleiderer [17] model to US 
pension fund data, and found a correlation of -0.44 between selectivity 
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and timing. The above findings, and others, are summarized at the end 
of the paper in Table VI. 

We calculated the Treynor [21] model for UK data, with 
heteroscedasticity correction, and found mean coefficients for selectivity 
of -0.0001 (standard deviation 0.00239) and for timing of -0.26 (standard 
deviation 0.479). These are broadly similar to US estimates by Coggin 
[5] of mean selectivity 0.000422 (SD 0.00265) and mean timing -0.279925 
(SD 0.635032). Our correlation between Treynor [21] estimates of 
selectivity and timing was -0.57, whilst Coggin [5] found correlation 
between the Treynor [21] coefficients in the neighbourhood -0.45, using 
various market proxies and measures of correlation. These results 
suggest that our UK data set behaves much like the US data sets of 
Coggin [5], Coggin [6] and Lee [14]. 

We also replicated the US studies of the basic Henriksson [9] 
model [e.g. Chang [4], Jaganathan [11], Connor [7]]. Our UK results 
(discussed in more detail later) were again broadly similar to US results. 

Having confirmed the comparability of US and UK data, we 
began to break new ground, by extending the Coggin [5] meta-analysis 
method to the parameter estimates of the Henriksson [9] model. Coggin 
[5] meta-analysed only two parameters, namely selectivity and timing, 
but we show in Sections II and III below that all three of the regression 
parameters are correlated, both theoretically and empirically. We 
therefore also meta-analysed the third parameter of the Henriksson [9] 
model, the upmarket beta. 

Our traditional meta-analysis of the variance of Henriksson [9] 
selectivity gave similar results to the traditional meta-analysis of 
Pfleiderer [17] selectivity by Coggin [5]. We estimated the true variance 
for Henriksson [9] selectivity at 0.000002 (Coggin [5] estimated 0.000003 
for Pfleiderer [17] selectivity: see Table VI). The similarity is interesting, 
since the gross inter-fund variation of selectivity is far larger in the 
Henriksson [9] model than in the Pfleiderer [17] (larger measurement 
error). Our estimate of the true Henriksson [9] selectivity variance did 
not differ significantly from a null hypothesis that it was zero, but 
equally it did not deviate significantly from a null hypothesis that it was 
equal to the Coggin [5] estimate. 

The specifications of timing in the Henriksson [9] and Pfleiderer 
[17] models are incompatible, so the absolute values and variances of 
their timing coefficients cannot be compared. In our meta-analysis the 
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true variation of Henriksson [9] timing was estimated to be significant, 
and was about 34% of its observed variance (Coggin [5] estimate for 
Pfleiderer [17] timing: 26.7%: of its observed variance). This implies that 
the Henriksson [9] timing estimate may be of higher statistical precision 
than the Pfleiderer [17] timing estimate, which seems unlikely. 

We also meta-analysed the variance of the upmarket beta in the 
Henriksson [9] model. We estimated its true variance at 0.00868, which 
was significant, and a large percentage (57%) of its gross interfund 
variance. This also seemed implausible. Firstly, one might have 
expected well diversified and prudently managed funds to have rather 
similar betas, whereas this estimate implies that one fund in 20 had an 
average upmarket beta, over the entire 141 month period, either below 
0.626 or above 0.995. Secondly, because there is high empirical 
correlation between all three Henriksson [9] regression parameters 
(selectivity, upmarket beta and timing) one would expect that if 
measurement error is high in any of them (as the large negative 
correlation of selectivity and timing suggests) it should be high in all. 

These facts motivate a cautious approach to traditional meta-
analysis of the Henriksson [9] model, and a more careful analysis of the 
relationship between measurement error, covariation and true variation 
for all three parameters in that model. We first consider the severe 
negative correlation between Henriksson [9] selectivity and timing. 

 
IV. NEGATIVE CORRELATION BETWEEN SELECTIVITY AND 

TIMING IN THE HENRIKSSON-MERTON MODEL 
 

Negative correlation between estimated timing and selectivity in the 
Henriksson [9] model has been reported by Henriksson [8], Chang [4], 
Jagannathan [11], Armada [2] and Connor [7]. Henriksson [8] and 
Jagannathan [11] found negative correlation for randomly chosen 
portfolios. The correlation is in the region of -0.86 for UK data (exact US 
correlations have not been published, to our knowledge). See Table 1 
and Figure 1. Selectivity is identified in Table 1 as α, and timing as β2, in 
reference to equation (1) below. 
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Table 1 
Correlations of estimates of parameters for the Henriksson-Merton 
model. Sample: estimates of α, β1 and β2 from 141 models fitted to a 
cross-section of mutual funds. Dependent variable for each model: 

monthly returns 1978/90 
(Individuals funds' values for α and β2 are plotted in Figure 1). 

 
 α β1 β2 

α 1 -0.7201 -0.8571 
β1 -0.7201 1 0.6497 
β2 -0.8571 0.6497 1 

 
 
 
 
 

Similar correlations seem to exist in US data and Japanese data. 
The proportion of funds that had at the same time significantly positive 
selectivity and significantly negative timing (or the opposite), which 
Chang [4] found in US data, is similar to the proportion found by 
Armada [2] in UK data. This suggests that negative correlations are 
similar in both markets1. 

In Table 1 (and Table 2 below), the correlations which 
Henriksson [8] and Coggin [5] would treat as interesting are the strong 
negative ones between estimated α and β2 (selectivity ability and timing 
ability). However there are equally robust correlations between β1 and 
β2, and between α and β1. These also require explanation, and, we argue, 
can be exploited in estimation. 

Henriksson [8] states without analysis that measurement error "is 
not likely to be the entire explanation" for negative correlation, and he 
accordingly casts doubts on the CAPM. In contrast Coggin [5] quote 
from Hunter [10] that "correlation between the estimates for selectivity and 
timing will necessarily be negative....because the sampling errors for the two 
estimates are negatively correlated. The magnitude of the correlation between 
the two estimates is the same as the magnitude of the negative correlation 
between the two sampling errors." Coggin [5]'s statement is not quite 
technically correct, since it is valid for covariance rather than 
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correlation, and a given covariance can lead to various levels of 
correlation, as discussed below. 

 
 
 
 

Figure 1 
Scatterplot of Pα̂  vs.  for 141 funds: 2pB̂

monthly returns: Feb. 78 – Feb. 90 
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Equation (1) is due to Merton [16] and Henriksson [9]: 
 

( ) ( ) ( ) ( )ttYtXtZ ppppp εββα +++= 21                       (1) 
 

where:                                     ( ) ( )[ ]tXMAXtY −= ,0  
 

In this equation Zp(t) is the excess return (compared to the risk 
free asset) earned by fund p in time t, αp is a return component to fund 
p which is independent of market movements, and X(t) is the excess of 
the market return over the risk free return in time t. The error term εp(t) 
is heteroscedastic, which the estimation should in theory allow for. We 
found like Lee [14] that the correlation between the three coefficients in 
equation (1) is not sensitive to whether the estimates are OLS or 
heteroscedasticity adjusted. 

Henriksson [9] interpret αp as a measure of selectivity skill, and 
β2p as a measure of timing skill, since Y(t) can be related to the return 
from a put option on the market, taking the value of zero when the 
market rises, and -X(t) when the market return falls below that of the 
risk free asset (i.e. when X(t) < 0). This assumes that the manager makes 
a timing move in response to the expected sign of a downward market 
movement, irrespective of its expected magnitude. The timing move can 
be to move out of the risky market, or to purchase a put on the market. 
The cost of this transaction is not theoretically allowed for in (1), but it is 
implicitly present in empirical estimates of (1), since it reduces the 
fund's overall assets, and hence its return. 

Some assumed restriction on the investor's timing behaviour, not 
necessarily as severe as this one, seems essential if we are to estimate 
timing ability from portfolio return data, according to Admati [1], and 
Lehmann [15]. Our own results below, although they are noisy (or 
perhaps even because they are so noisy), appear to reinforce the doubts 
which Pfleiderer [17] raised on theoretical grounds, and which Connor 
[7] developed on empirical grounds, that the Henriksson [9] model may 
not be very efficient at detecting timing. 

In the spirit of Coggin [5] we call the interfund comparisons of 
Table 1 and Figure 1 "meta-data". OLS estimates are displayed, since 
GLS estimates made little difference to the correlations (compare Tables 
4a and 5a). We reasoned that if negative parameter correlation applies 
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over cross sections of funds, it should also apply for each individual 
fund (the logic of traditional meta-analysis in reverse). If so, the 
calculated correlations between coefficients α and β2 in (1), for each of 
the 141 individual funds in the sample, should also be negative. 

Table 2 confirms this, to a degree which briefly startled us. The 
estimated OLS coefficient correlations for any one fund, as shown in this 
table of "micro" or intra-fund estimates, are identical for all 141 
individual funds, to the highest accuracy available. The correlations 
change slightly between sampling periods, but are identical for all funds 
in a given period. Table 2's micro correlation is, as expected, similar to 
the meta-correlation in Table 1 across all 141 funds. However for α and 
β2, the correlation in the meta-data is stronger than in the micro data. 
Traditional meta-analysis might interpret a larger variance and 
covariance in the meta data to mean real variation, but an alternative 
interpretation is that the meta-data are affected by measurement errors 
not foreseen at the micro level, in such a way that most of the extra 
variance is pure noise, and hence adds both variance and negative 
covariance to interfund estimates of selectivity and timing. 

The reason that Table 2 is uniform across all funds is that the 
theoretical correlation matrix of OLS regression coefficients is based 
only on the correlations of the independent variables (including the 
constant vector of ones, when moments are taken about the origin). 
These independents are identical for all the funds in a given time 
sample, thus yielding identical micro-estimates of the correlations of the 
regression coefficients. This is a salutary reminder that large cross 
sections of funds may not, in important senses, yield statistically 
independent variation. GLS estimates of coefficient correlation do not 
show the perfectly uniform confidence intervals of OLS estimates, but 
they are very similar on average. They also suffer from additional noise, 
and from a loss of degrees of freedom, both arising from the estimation 
of the heteroscedasticity correction. 

The mean levels of Henriksson [9] selectivity and timing which 
we estimated for the total period, using heteroscedasticity corrected 
estimates, were for selectivity, 0.0006 (standard deviation 0.0038), and 
for timing -0.077 (standard deviation 0.163). Comparable estimates 
without heteroscedasticity correction were, for selectivity 0.0008 
(standard deviation 0.0036), and for timing -0.091 (standard deviation 
0.153). The coefficients conform to the pattern of positive selectivity and 
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negative timing found in many US studies. The heteroscedasticity 
correction tended on average, as theory predicts, to reduce the 
coefficients slightly, and to increase their variances. We next consider 
possible explanations for the correlations. 

 
 
 

Table 2 
Expected correlations of parameter estimates for the Henriksson-Merton 
model. Based on the standard joint confidence intervals for the regression 

parameters, for each of the 141 models used in Table 1 and Figure 1. 
 

 α β1 β2 
α 1 -0.7203 -0.7704 
β1 -0.7203 1 0.8709 
β2 -0.7704 0.8709 1 

 
Note: Each of the141 OLS models gives the identical correlation matrix shown below, for 
the overall time period 1978-90. 
 
 
 
 

 
 

V.   THEORY 
 
A. Correlation between the two beta parameter estimates, due to 

correlation of the independent variables 
 

Figure 2 plots the definitions of the two independent variables in (1), 
namely Y(t) and X(t). It shows definitional negative correlation between 
these variables, which causes positive correlation between their 
estimated coefficients β1 and β2. 

 
 
 

 
Figure 2 
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The definitions of the two independent variables in (1): Y(t) and X(t) 
 

 
 
 
 

If all observed X(t) are negative (line segment AO) there is perfect 
negative correlation between Y(t) and X(t). If all observed X(t) are 
positive (segment OC) there is zero correlation between Y(t) and X(t), 
since Y(t) is identically zero. But in general both positive and negative 
X(t) (positive and zero Y(t) ) are observed, so that the mean value of Y(t) 
is positive. But if Y(t)'s mean is positive, even zero values of Y(t) (when 
X(t) is positive) become negative deviations from that mean, and 
contribute elements of negative covariance between X(t) and Y(t). 

The resulting negative correlation between X(t) and Y(t) depends 
on the form of the distribution of the market return, and its location 
with respect to the risk free return. The macro estimate of correlation in 
Table 1, which is close to -0.86, is not very different from the cosine of 
angle OAC (-0.84) which is the expected correlation between X(t) and 
Y(t) for a uniform distribution of returns centred on the origin. 
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Alternatives to the Henriksson [9] model, such as the Treynor [21] 
and Pfleiderer [17] models, are also affected by correlation of the 
independents, but less strongly. For example when the market return is 
positive (as may be expected on average) it is positively correlated with 
its own square. We therefore expect the coefficients for these two 
variables in the Treynor [21] model, which is the first stage of the 
Pfleiderer [17] model, to be slightly negatively correlated. The absolute 
size of the correlation must in general be smaller than in the Henriksson 
[9] model of Figure 2, since the correlation takes opposite signs for 
positive and negative X(t), and is less than one in either case. 

It would therefore be interesting to estimate all three models in a 
severe bear period, when average market return is negative throughout, 
and hence negatively correlated with its own square. We might expect a 
changed pattern of correlation between the parameters in all three 
models. 

Negative correlation between the two independent variables can 
therefore explain the positive correlation between their estimated beta 
coefficients in (1) as in Table 1. We now consider the negative 
correlations between both β’s and the constant α. 

 
B.  Negative correlation between α and β estimates 

 
Negative correlation between regression estimates of α and both β’s in 
(1) can be removed by re-expressing the independents in deviation 
form, where the underlined terms are means: 

 
( ) ( ) ( )[ ] ( ) ( )[ ] ( )ttYtYtXtXtZ ppppp εββα +−+−+= 21

*                  (2) 
 

By multiplying out and collecting terms we see a relation between 
(1) and (2): 

 
( ) ( )tYtX pppp 21

* ββαα −−=                                 (3) 
 
α*

p and αp are in general identical only if X(t) and Y(t) have means 
of zero (or of suitable value and opposite sign) which makes (1) 
identical to (2), but CAPM considerations require both the means to be 
positive in general. Although the least squares estimate of α*

p in (2) is 
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not correlated with estimates of β1p and β2p, α*
p merely measures fund 

p's total average excess return over the risk free asset. Parameters of 
interest, such as selectivity ability αp, are found by substitution using 
(3), which introduces negative correlation. 

Hence the regression specification enforces negative correlation 
between empirical estimates of α and both β parameters, but gives no 
information on any intrinsic correlations of the parameters themselves. 
In fact, the regression model assumes that all parameters are fixed, so 
the question of variation and covariation between them cannot even 
arise. We try to relax this assumption in the next subsection, which 
models the relationship between true parameter variance, measurement 
error and correlation of the parameter estimates. 

 
C. Small sample estimation behavior of identity relationships 

resembling the Henriksson-Merton model 
 

Assume that investor performance can be defined identically as the sum 
of a selectivity component and a market timing component, both being 
normally distributed with constant variance. We treat an accurately 
observed total return T (analogous to Zp in (1)) as the sum of two 
independent normally distributed random variates a and b (analogous 
respectively to the selectivity component α and the timing component 
β2pY(t) in (1); we temporarily ignore β1pY(t)). All variables are in 
deviation form. Suppose some estimation process that accurately 
follows the random variation of b. The selectivity component a of each 
observation of return is estimated by subtraction as â =T-b (equation 
(6b) below). If a and b have variances of A and B respectively, and zero 
covariance, it is elementary that the estimate of a is accurate, and the 
estimates â and b are uncorrelated, as follows: 

 
baT +=                                               (4) 

 
Derive the variance-covariance matrix for T, a and b respectively, 

by noting that for vector X ~ N(µ, Σ), its linear function QX is distributed 
N(Qµ, QΣQ'), where X, Σ and Q respectively are (nx1), (nxn) and (pxn) 
(e.g. Press [18], p. 63). Here n is 2, p is 3, Σ is (2x2) and: 
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We define the three rows of Q respectively from (4) and the 

identities a = a and b = b. Hence the variance-covariance of T, a and b is: 
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To find the variance-covariance matrix between estimator â for a 

and the accurately observed b, we substitute expression (5) (3x3) for Σ 
and use (6a) and the identity b = b respectively as the rows of a new Q 
(2x3). Equation (6b) shows that each resulting estimated observation â 
of random variable a has the correct variance A and is uncorrelated with 
b: 

 
bTa −=ˆ                                             (6a) 
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Equation (1) converges in probability to an accounting identity 

resembling (4), in which the fixed parameter β2 is observed without 
error. However in finite samples of (4), as both Armada [3] and Hunter 
[10] point out, if b is estimated with error, whilst total performance T is 
observed with or without error, each error in the estimate of b is on 
average matched by an equal and opposite error in the estimate of a, 
contributing a component of negative covariance between estimates of a 
and b. We can show that the negative covariance does not imply a 
unique level of negative correlation between the estimates, as Hunter 
[10] and Coggin [5] have suggested. 

Define an error term e, having mean zero and variance E, 
uncorrelated with all other variables, which distorts observations of b. 
The estimator of b becomes b such that: $
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ebb +=ˆ                                                (7) 
 
And a redefined estimator â of a is again obtained by 

subtraction: 
 

bTa ˆˆ −=                                                (8) 
 

The variance-covariance matrix of â and b , respectively, is 
defined by taking the rows of Q (2x3) to be the coefficients of these 
variables in (7) and (8): 

$
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Equation (9) shows that there is negative covariance between â 

and b  [not, as Coggin [5] state, negative $ correlation] equal in magnitude 
to E, the magnitude of the error variance in estimating b. The correlation 
between â and b  depends on the relative sizes of A, B and E. It 
approaches -1 if E approaches infinity, or if both A and B tend to zero 
for a non zero E. Such covariation seems unavoidable in finite samples. 
Equation (9) implies that there is (asymptotically) a relationship 
between the observed variances of â and b  (respectively A+E and B+E), 
the error variance E, the covariance E and the true variances A and B. 
We try to exploit this relationship later. 

$

$

We first attempt a richer approximation to the structure of (1). 
Assume that total investment return T is made up of three elements, the 
selectivity component a, the portfolio upmarket beta component b1 
[analogous to β1pX(t) in equation (1)] and a timing component b2 
[analogous to β2pY(t) in (1)], so that: 

 
21 bbaT ++=                                       (10a)
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The three return components are assumed to be uncorrelated2 and 
to have variances respectively A, B1, and B2. These yield the variance-
covariance matrix below for the total return T and its three components 
a, b1 and b2 respectively: 

 

















 ++

22

11

2121

00
00
00

BB
BB

AA
BBABBA

                       (10b) 

 
In order to model measurement error, we define error terms e1 

and e2, having variances E1 and E2 respectively, each being uncorrelated 
with all other variables3. These error terms are assumed to affect the 
performance of estimators of b1 and b2 respectively. If: 

 
21 bbaT ++=                                      (11a) 

 
Let: 
 

111
ˆ ebb +=                                         (11b) 

 
So that, from previous assumptions, the variance of  is B1b̂ 1 + E1. 

We assume that some estimator is available for b̂ . We ensure that its 
performance models the known empirical covariance between 
regression estimates of β

2

1p and β2p, due to correlation of the independent 
variables (as in Figure 2) by specifying as follows (other specifications 
are possible): 

 

2122
ˆˆ ebkbb ++=                                    (12) 

 
The variance of this estimate is B2 + E2 + k2(B1 + E1). Since we are 

modelling the performance of estimates, the coefficient k is expected to 
be positive, because the known negative correlation between the 
variables X(t) and Y(t) in (1) leads to positive correlation between their 
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coefficients β1 and β2 .These coefficients are modelled, indirectly at this 
stage, by b  and b .$

1
$
2

4 

We redefine  as the residual after subtracting b  and b  from T: $a $
1

$
2

 

21
ˆˆˆ bbTa −−=                                        (13) 

 
The variance-covariance matrix of the three estimators, in the 

sequence  and b and  respectively (still taking T to be measured 
without error), is: 

$b1
$
2 $a
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Relation (14) suggests important asymptotic relationships 

between the various variances, covariances and correlations in the 
Henriksson [9] type of model. Not all combinations of true parameter 
variation, covariation and measurement error are (asymptotically) 
possible. Traditional meta-analysis of the Henriksson [9] model ignores 
these relationships, which seems unwise. It may also be unwise that 
traditional meta-analysis of the Treynor [21] and Pfleiderer [17] models 
ignores any analogous relationships that may affect them. 

The present model is however only illustrative. It ignores several 
potentially important refinements such as heteroscedasticity, and the 
non-normal distribution of k. Perhaps more seriously, it omits to model 
the fourth parameter of (1), the error term. We assume in (11a) that true 
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performance is observed without error and is completely determined by 
fluctuations in true selectivity, true upmarket beta and true timing, but 
with no further random fluctuation. This is potentially unrealistic, but to 
allow for it would complicate the estimation as discussed later. 

The notation of (14) can be simplified as follows5: 
Defining the gross observed variances of b ,  and a  as X, Y and 

Z: 

$
1

$b2 $

 
11 EBX +=                                          (15) 

 
22

2 EBXkY ++=                                     (16) 
 

( ) 2121 BEkYAZ −+++=                               (17) 
 

The variance-covariance matrix (14), in the revised row/column 
sequence , b and , can be expressed as: $a $

1
$b2

 

















−+−
−−

−+−−−

YkXkEBY
kXXEkX

kEBYEkXZ

12

1

121
                 (18) 

 
Correlations are computed by dividing each covariance by the 

square root of the product of the respective individual variances: 
 

( ) ( )[ ]5.021
ˆ,ˆ

XY
kXbbCorr =                                 (19) 

 
( ) ( )

( )[ ]5.0
1

1 ˆ,ˆ
XZ

EkXabCorr +−=                         (20) 

 
( ) ( )

( )[ ]5.0
12

2 ˆ,ˆ
YZ

kEBYabCorr +−−=                        (21) 

 
Only one covariance parameter is explicitly assumed in (14) 

namely k, whose existence, due to the correlation of independents, is 
well established. The rest of the highly sensitive covariance structure of 
(14) is due to the measurement errors E1 and E2. 
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This sensitivity is illustrated in Table 3. 
 
 

 
Table 3 

Parameter sets giving approximately "expected" values for 
intercoefficient correlations 

 
 1 2 3 4 5 6 
A 0.250 0.080 0.220 0.350 0.210 0.150 
B1 0.450 0.015 0.300 0.060 0.007 0.320 
B2 0.100 0.010 0.100 0.015 0.004 0.070 
E1 0.120 0.030 0.040 0.200 0.113 0.030 
E2 0.050 0.008 0.030 0.040 0.012 0.014 
k 0.800 1.100 1.050 0.780 0.670 0.850 
 

Intercoefficient correlations generated by the above 
 

b1,b2 0.84 0.87 0.86 0.86 0.88 0.87 
b1,a -0.77 -0.77 -0.79 -0.77 -0.76 -0.77 
b2,a -0.72 -0.73 -0.73 -0.75 -0.73 -0.72 

Note: The above results take all parameters at the scale of A (raw monthly excess 
return). The scaling effects of X(t) and Y(t) on parameters B1 and B2 are omitted. 

 
 
 
 
In Table 3 we vary all six assumed parameters, in order to imitate 

the observed values of three intercoefficient correlations. Not 
surprisingly, since there are three surplus degrees of freedom, some 
very diverse solutions are possible. The correlations are sensitive to 
small variations in the assumed parameters. The sensitivity has 
important implications when we try later to estimate the parameters 
themselves from the observed correlations. 

We tried the effect of reducing k, to see whether a lower and/or 
reversed covariation between the independent variables (as expected in 
the Treynor [21] and Pfleiderer [17] models) leads in general to smaller 
negative correlation between selectivity and timing. We found no 
simple relationship between k and the level of correlation. This, plus 
various structural differences between the Henriksson [9] and the other 
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models, makes it hard to foresee the result of applying the present 
modelling approach to the Treynor [21] or Pfleiderer [17] models. 

 
D.  Estimation from asymptotic relationships 

 
We wished to estimate from an empirical sample of (14) the six 
parameters within it, namely the hypothesised "true" parameter 
variances A, B1 and B2, [which are the central issue addressed by Coggin 
[5] ] and the two hypothesised error variances E1 and E2, together with 
k. 

Interestingly, there is an exact solution. The six unobservable 
parameters assumed in (14) generate a total of six observable 
parameters (namely the observed values of variances X, Y and Z, and 
their three intercorrelations). We can solve exactly for a point estimate 
of all six unobservable parameters, using simple substitution on the six 
observable values, as follows. Rearranging (19): 

 

( )( )
X

XYbbCorrk
5.0

21
ˆ,ˆ=                              (22)6 

 
Rearranging (20) and substituting from (22): 

 
( )[ ]( ) kXXZabCorrE −−= 5.0

11 ˆ,ˆ                          (23) 
 

Rearranging (21) and substituting from (22) and (23) 
 

( )( ) 1
5.0

22 ˆ,ˆ kEYYZabCorrB ++=                        (24) 
 

And by substitutions and rearrangements in (17), (16) and (15): 
 

( ) 2121 BEkYZA ++−−=                             (25) 
 

XkBYE 2
22 −−=                                 (26) 

 
11 EXB −=                                     (27) 
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An interesting feature of this approach is that unlike traditional 
meta-analysis, it uses only a single variance-covariance matrix, so it can 
be solved either using inter-fund covariances alone, or intra-fund 
covariances alone. Comparison between the two estimates, essential in 
traditional meta-analysis, is not necessary, but is also possible. 

The point estimates produced by equations (22) to (27) are 
sensitive to small variations in the inputs, so it is best to work at the 
highest available precision. Since the input parameters are derived from 
variances and covariances, it is theoretically desirable to use GLS 
estimates of them. 

 
E. Testing problems 

 
The estimates must, at best, have wide, highly skewed and jointly 
dependent distributions, which unfortunately are not convenient to 
treat. Their distribution depends ultimately on the joint distribution of 
the variance-covariance matrix of the regression estimates. A variance-
covariance matrix of order p (under multivariate normality) is jointly 
distributed as Wishart ( Σ, p, n), where the scale matrix Σ is the 
hypothetical true population covariance matrix, and n is the number of 
degrees of freedom, or fully independent observations of the covariance 
(see Press [18], p. 100 et seq.). 

The Wishart distribution involves weighted sums of chi squared 
variates, which are processed by the present model in various ways. The 
Wishart distribution is not convenient to handle, and particular 
problems arise in the present case. For example it is not straightforward 
to test the joint hypothesis (either as a null or as an alternative) that all 
estimated variances are non negative, and that (for example) variances 
A and B2 are both zero. A hill-climbing model is probably required. 
Other complications are that the expected Wishart scale matrix must 
depend on the particular estimator used for the Henriksson [9] model. 

We do not pursue the formal testing project in this paper, but 
meanwhile as a descriptive statistic, we use the ratio of two variances, 
namely our estimate of (true variance plus noise variance) and our 
estimate of noise variance alone, for each parameter singly. The null 
hypothesis (of zero true variance) predicts a ratio of one. Coggin [5] use 
the same ratio to compare the equivalent outputs of traditional meta-
analysis. In the context of their model, Coggin [5] multiply the variance 
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ratio by the sample degrees of freedom (n-1) and treat the product as a 
χ2 statistic with n-1 degrees of freedom. For descriptive purposes we 
perform a similar test, though its formal relevance in the present model 
is less clear-cut. 

 
VI.   AN EMPIRICAL APPLICATION 

 
1. Method 

 
We solved equations (22) to (27) using inputs derived from the 
regression coefficient variances of equation (1), which was fitted to the 
monthly returns of 141 UK unit trusts over subsets of a 144 month 
period, 1978-90. Our UK market proxy was the Financial Times All 
Share Index. 

 
2. Scaling aspects 

 
Equation (14) is expressed in terms of elements of monthly return, but 
the available input variances are those of the regression coefficients of 
(1) whose scale is different. For example the monthly return component 
b1 due to the upmarket beta, used in (14), corresponds to β1pX(t) in (1). 
The variances of β1p and β1pX(t) are several orders of magnitude apart, 
so the estimated variances of β1p and β2p must be rescaled in order to 
yield variances X and Y. Of course α is defined from the outset as a 
component of periodic return, so its variance as estimated in (1) need 
not be rescaled for use as Z in (22) to (27). 

We rescaled the regression variances for β1p and β2p to the scale of 
variances of components of monthly return, by multiplying them 
respectively by X(t)2 and Y(t)2, using var(ax) = a2var(x). We used the 
rescaled values as estimates of X and Y for equations (22) to (27). It is 
possible re-notate the entire model in terms of the variances and 
covariances of the original regression coefficients, but this is not 
essential. As an example, if the postulated "true" variances of the 
regression coefficients β1p and β2p are called B  and  respectively, 
then (10b) becomes

1
* B2

*

7: 
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            (28) 

 
The six input variables exist in two forms: 
a) for the cross section of funds (meta-data), and 
b) for all 141 funds individually (micro data). 
 
a) the cross section of all 141 funds (see Table 1) yields one set of 6 

output parameters, which estimate inter alia, the "true" inter-fund 
variation of timing, selectivity and upmarket beta. These estimates are 
in Tables IVa (OLS variances) and Table Va (GLS variances) for various 
time samples. 

b) regression estimates of the six input variances and correlations 
exist for each individual fund, although in the OLS case the three 
correlations are identical for all funds (see Table 2) and the GLS 
correlations are also related but highly noisy (compare the resulting 
means and extremes of the output variables in Tables 4b and 5b). This 
yields 6 input and 6 output parameter estimates of intra-fund variation 
for each of the 141 funds, though highly dependent. The 141 micro 
estimates are exemplified and summarized in Table 4b (for OLS 
variances) and Table 5b (for GLS variances). 

 
3. Scaling of results 

 
Equations (22) to (27) estimate relationships between the variances of 
three elements of periodic return. However it is usual to discuss the 
"true" variances of the regression coefficients themselves, as estimated 
for (1) (rather than the variances of elements of return). Therefore the 
data in Tables 4a and 4b and 5a and 5b are reported at the scale of the 
regression coefficients of (1). This was done by reversing the earlier 
rescaling i.e. we divided the estimates of B1 and B2 from equations (22) 
to (27) by X(t)2 and Y(t)2 respectively, and similarly the estimates of E1 
and E2. 

For strict consistency with the notation of (28) the rescaled 
estimates of the true and noise variances of the regression coefficients 
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could be labelled as B  and  and  and , but the table 
captions of Tables 4 and 5 omit this detail, since the final scale is pointed 
out in their titles. 

1
* B2

* E1
* E2

*

 
4. Calculation aspects: OLS inputs versus GLS inputs 

 
Unfortunately, although the GLS variances are asymptotically superior 
inputs to (14), they proved less stable than the OLS variances. The cause 
may be that GLS must estimate extra, and sensitive, parameters, from 
noisy data. The average estimated variance of a GLS coefficient was 
close to, but larger than, that of an OLS coefficient, as theory predicts 
(compare the first three rows between Tables 4a and 5a). However, in 
individual cases, the GLS variance was often much smaller or larger 
than the corresponding OLS variance. The OLS estimates, therefore, 
although slightly biased on average, probably have a much smaller total 
mean squared error. We therefore report the results using both OLS and 
GLS inputs. 

 
5. OLS results: Tables 4a and 4b 

 
Table 4a shows the "meta level" results from the inter-fund data, while 
Table 4b summarizes the 141 micro results of individual funds. For 
brevity, Table 4b shows only three individual funds in full detail, plus 
the average, maximum and minimum values over all 141 individual 
funds. Averages and extremes are reported for descriptive purposes, 
and may not be suitable for inference.  

Tables 4a and 4b conflict sharply with traditional meta-analysis 
results. They suggest that on average there is little or no real difference 
between funds in timing ability (B2 is zero), or in the upmarket beta (B1 
is zero). The OLS variances and covariances of the estimates can be 
explained on average as entirely due to the specified artifacts and to 
measurement error. There seems some case for true variation in 
selectivity (A) within or between funds, since A is a robustly large 
percentage of the estimated measurement error in both tables. This 
however is itself possibly an artifact, as we discuss below. 

A descriptive variance ratio can be calculated, by adding one to 
the relevant fraction in the "ratios" section of each table. If the χ2 test of 
Coggin [5] is assumed relevant, its value would be highly significant for 
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A in all periods and in both tables, and the value of B2 in the second sub 
period of Table 4a would also be significant at 5%. On the more 
conservative assumptions of the f test, none of the true inter-fund 
variances in Table 4a is significant, and in Table 4b only A reaches 
significance, which measures intra-fund variation. We do not assume 
that either χ2 or f is the exact distribution of this variance ratio. 
 
 

 
 

Table 4a 
Input variances calculated by OLS 

 
Solutions of equations (22) to (27) for a cross section of 141 mutual funds 
are reported at the scale of the original regression coefficients, not of 
components of monthly return. 

 
  Total Period 

1978-90 
Subperiod 

1978-84 
Subperiod 

1984-90 
Inputs 

(observed) X 0.015360 0.026333 0.021162 

 Y 0.023428 0.057630 0.028916 
 Z 0.000013 0.000034 0.000017 
 Corr ( ) 21

ˆ,ˆ bb 0.6497 0.6786 0.6907 
 Corr ( ) ab ˆ,ˆ

1 -0.7201 -0.6817 -0.7545 
 Corr ( ) ab ˆ,ˆ

2 -0.8571 -0.8697 -0.7951 
Scaling X(t) 0.00844072 0.00910837 0.00777307 

 Y(t) 0.01606381 0.01460923 0.01751838 
Outputs 

(calculated) A 0.000003 0.000010 0.000004 

 B1 0.000168 -0.002165 0.001732 
 B2 -0.000018 -0.007960 0.004210 
 E1 0.015192 0.028498 0.019429 
 E2 0.013557 0.039051 0.010911 
 k 1.527038 1.610192 1.819647 

Ratios B1/E1 1.11% -7.60% 8.92% 
 B2/E2 -0.13% -20.38% 38.58% 
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 A/(Z-A) 28.00% 42.13% 29.22% 
Table 4b 

Coefficients calculated by OLS (inputs and outputs rounded) 
 

Solutions of equations (22) to (27) for individual funds: summary of 141 
UK Mutual Funds. Equations were solved at scale of monthly return, 
but the solutions are shown here at the scale of the regression 
coefficients. 

 
  Total Period 1978-90 
  Three Sample Funds Summary of 141 Funds 

  ABBG BARUG EFMGI Average Max Min 
Outputs 

(calculated) 
A 0.000002 0.000002 0.000002 0.000005 0.000014 0.000001 

 B1 0.000000 0.000000 0.000000 0.000000 0.000006 -0.000005 
 B2 0.000000 0.000000 0.000000 0.000000 0.000000 -0.000002 
 E1 0.002428 0.003461 0.003297 0.006674 0.020608 0.001394 
 E2 0.001360 0.001938 0.001846 0.003739 0.011545 0.000781 
 k 2.52391 2.52386 2.52389 2.52891 2.52393 2.52386 

Ratios B1/E1 -0.02% -0.01% 0.00% 0.00% 0.08% -0.09% 
 B2/E2 -0.02% -0.01% -0.01% -0.01% 0.01% -0.03% 
 A/(Z-A) 65.68% 65.68% 65.67% 65.67% 65.69% 65.66% 
Note: Summary rows and columns generally relate to different individual funds: 
extremes of ratios need not arise from extremes of individual variables, and ratios of 
averages do not equal averages of ratios. 
 
 
 
 

 
Among many striking uniformities in Table 4b, E1 is a constant 

multiple of E2. Equation (14) explained the empirical correlation of α 
and β2 by postulating two uncorrelated error variances E1 and E2, so we 
were at first startled to find a further unexplained correlation arising in 
the empirical data, between E1 and E2 themselves. The explanation 
seems important. 

Formally, the absolute variance-covariance matrix of the OLS 
regression coefficient estimates for fund p is simply the inverse of the 
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variance-covariance matrix of the independent variables (which is 
identical for all the funds), multiplied by s , which is the standard 
error of estimate for fund p (see e.g. Wonnacott [22], p. 248). Hence the 
entire content of Table 4b possesses in theory only a single degree of 
freedom

p
2

8 reflecting the difference from fund to fund in the standard 
error  of the regression fit of (1). Instead of 141 estimates of 6 
covariance parameters, Table 4b reflects only 1 estimate of six 
parameters, varied by 141 estimates of one parameter. This fact has 
sobering implications for a large class of multi-fund comparisons. 

sp
2

 
6. The effect of the heteroscedasticity correction: Tables 5a and 5b 

 
Tables 5a and 5b use heteroscedasticity-corrected estimates of the input 
variables. The results are disappointingly noisy. The GLS values of the 
input variances X, Y and Z are close on average to the OLS estimates, 
although slightly larger, as theory predicts (compare the input rows of 
Table 4a and Table 5a). But the resulting estimates of the output 
variables are much more scattered, especially for the individual funds, 
and over the shorter time periods. However when averaged over longer 
periods, and across all funds, the outputs of GLS are broadly similar to 
those of OLS. 

Table 5a for the total period seems to show no true variation 
between managers in timing ability, and little or no true variation in 
upmarket beta. Both of these findings contradict traditional meta-
analysis. Findings for the two subperiods are noisier, but the deviations 
of B1 and B2 from their null hypothesis mean of zero are broadly similar 
in direction to the OLS estimates in Table 4a, though larger in 
magnitude. Coggin [6] point out that if the true value of a variance such 
as B1 or B2 is zero, its value when estimated by subtraction within a 
finite total, as here, will be below zero with 50% probability, which is 
roughly what we find in both the GLS and OLS estimates (though at 
rather different scales). The absolute deviations of the GLS B2 from zero 
are equal and opposite in the two sub periods. 
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Table 5a 

Coefficients calculated with heteroscedasticity correction 
 

Solutions of equations (22) to (27) for a cross section of 141 Mutual 
Funds. Solutions are at the scale of the original regression coefficients, 
not of components of monthly return. 
 

  Total Period 
1978-90 

Subperiod 
1978-84 

Subperiod 
1984-90 

Inputs 
(observed) X 0.015640 0.026989 0.020672 

 Y 0.024068 0.057800 0.030606 
 Z 0.000014 0.000030 0.000016 
 

Corr ( ) 21
ˆ,ˆ bb 0.6553 0.6794 0.6764 ( ) 5.0XY

kX
=  

 
Corr ( ) ab ˆ,ˆ

1 -0.7237 -0.6875 -0.7108 
( )

0.5
1

(XZ)
EkX +−

=  

 
Corr ( ) ab ˆ,ˆ

2 -0.8691 -0.8679 -0.7675 ( ) 5.0
12

YZ
kEB-Y +

=  

Scaling X(t) 0.008441 0.009108 0.007773 
 Y(t) 0.016064 0.014609 0.017518 

Outputs 
(calculated) A 0.000003 0.000008 0.000004 

 B1 0.000864 0.002111 0.006425 
 B2 0.000122 -0.005007 0.005150 
 E1 0.014775 0.024879 0.014246 
 E2 0.014946 0.036127 0.011453 
 k 1.520514 1.594711 1.854901 

Ratios B1/E1 5.85% 8.48% 45.10% 
 B2/E2 0.81% -13.86% 44.97% 
 A/(Z-A) 24.47% 36.04% 34.84% 
 

 
 

 
The descriptive variance ratio reaches larger values in Table 5a 

than in 4a. This must be due to greater noise, which the χ2 test ignores. If 
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treated as χ2 with (n-1) degrees of freedom, the variance ratio for A 
would be significant at 5% in every case, and the excursion of B2 in the 
second subperiod would also be significant, as it was in the OLS 
estimates of Table 4a. The rounded estimates of A in Tables 5a and 5b 
respectively resemble the corresponding values in 4a and 4b 
(respectively 0.000003 and 0.000002). These estimates are not 
independent. 
 
 
 
 

Table 5b 
Variances calculated with heteroscedasticity correction (inputs and 

outputs rounded) 
 

Solutions of equations (22) to (27) for individual funds: summary of 141 
UK Mutual Funds. Solutions are at the scale of the original regression 
coefficients, not of components of monthly return. 
 
  Total Period: 1978-90 
  Three Sample Funds Summary of 141 Funds 
  ABBG BARUG EFMGI Average Max Min 
Outputs 

(calculated) 
A 0.000002 0.000002 0.000002 0.000004 0.000014 0.000001 

 B1 0.001189 0.002249 0.000465 0.002910 0.036672 -0.004502 
 B2 -0.000037 0.000038 -0.000213 0.000000 0.008017 -0.001488 
 E1 0.001696 0.001980 0.003025 0.004180 0.018629 -0.017828 
 E2 0.001517 0.002200 0.001877 0.004038 0.012884 0.000734 
 k 2.50111 2.54115 2.41112 2.58955 3.79439 1.80784 

Ratios B1/E1 70.12% 113.58% 15.36% 17.06% 1329.78% -2824.34% 
 B2/E2 -2.44% 1.74% -1.14% -3.66% 62.22% -32.88% 
 A/(Z-A) 65.80% 64.37% 70.38% 69.35% 92.46% 62.36% 
Note: Summary rows and columns generally relate to different individual funds: 
extremes of ratios need not arise from extremes of individual variables, and ratios of 
averages do not equal averages of ratios. 
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Parameters A and k seem to be robustly positive in all the tables. 
Of course k is known to be an artifact, and we suspect that A is also. The 
reason is that if there is a random element in investment performance 
(net of variations of timing and selectivity ability), the model of (14) 
forces all its variance to be included in the selectivity variance A. Our 
robust estimate of A may therefore be in whole or in part an estimate of 
the random element of investment performance. It is not surprising that 
this estimate should be similar between mico and macro data, or even 
between the Henriksson [9] model and the Pfleiderer [17] model used 
by Coggin [5]. Unfortunately, if one tries to allow for the random 
variation by adding an explicit error term to (11a), the number of 
parameters grows to seven. These cannot be estimated from six 
variances and covariances, in the absence of additional information. In 
general, the presence of an extra parameter seems to reduce the 
estimates of the other variance parameters (see Appendix). This 
suggests that our present estimates of all true and noise variances may 
be biased upwards. 

Subject to more analysis of the inference problems, a conservative 
interpretation is that our data set is compatible with a null hypothesis 
that the true variances of Selectivity and Timing are close to zero. The 
high noise level in the estimates means, however, that they are 
compatible with many other hypotheses. Indeed if our robust estimate 
of A is taken to be non-artifactual, our results actually go beyond the 
Coggin [5] interpretation, since they estimate a similar level of true 
variation in selectivity ability, but without any offsetting variation in 
timing. We suggest a further approach to this issue in Section V. 
 
7. Comparison of the micro and macro estimates 

 
A final step is is based on the null hypothesis of traditional meta-
analysis, namely that the inter-fund variances and intra-fund variances 
should be similar. Large discrepancies between the two estimates would 
suggest (in this context) errors in the method. This can be tested by 
subtracting the estimated intra-fund variance in Table 4b or 5b from the 
estimated intra-fund variance in Table 4a or 5a, as in traditional meta-
analysis. 

The test shows no evidence of problems. For the true selectivity 
variance A, and for the true variance of the upmarket beta, B1, the inter-
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fund variances, in Tables 4a and 5a, are actually smaller than the 
corresponding intra-fund estimates, in Tables 4b and 5b, though 
probably not significantly so. For the true timing variance B2, the inter-
fund variances are larger than the average of the intra-fund estimates, 
but both estimates are negligibly small on average, compared to the 
total observed variance Y of the timing parameter. 
 

VII.   SUMMARY AND DISCUSSION 
 

Traditional meta-analysis gives similar results in the Henriksson [9] 
model and in the Pfleiderer [17] model, even if the Henriksson [9] is 
applied to UK monthly data and the Pfleiderer [17] to US monthly data. 
In both models the "true" variance of timing is estimated to be 
significant, and the "true" variance of selectivity is close to 0.0000025. 
The "true" selectivity variance seems statistically significant in the 
Pfleiderer [17] model, but not in the Henriksson [9] model. There are 
reasons for doubting these traditional meta-estimates, at least for the 
Henriksson [9] model. 

a) Traditional meta-analysis ignores the known large covariation 
between selectivity and timing (and the upmarket beta), which is due to 
measurement error. This procedure discards useful information about 
the measurement error, and hence about true variation. It may estimate 
implausible joint states for the true variances, measurement errors and 
covariances of the three regression parameters. 

b) Dependence is higher than generally recognized between the 
estimates for different funds in cross sections of funds. Degrees of 
freedom are also consumed by parameters not of direct theoretical 
interest. 

c) Traditional meta-analysis gives an implausibly large estimate 
for the true inter-fund variance of the upmarket beta in the Henriksson 
[9] model (this has not been checked for the Treynor [21] or Pfleiderer 
[17] models). 

d) Traditional meta-analysis does not remove parameter 
correlation. An individual manager who achieves a high estimate of 
"true" Henriksson [9] selectivity on a univariate meta-analysis test, will 
usually achieve a low estimate of "true" timing on the same test. So the 
manager's overall excess return in the sample period is far lower than 
traditional meta-analysis of timing or selectivity alone would suggest. 
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We have suggested a new type of analysis. This actively exploits 
the observed variation and covariation of all three Henriksson [9] 
parameters (selectivity, timing and upmarket beta) in order to estimate 
their true variation. The new approach, in a somewhat simplified and 
noisy implementation, contradicts traditional meta-analysis in several 
ways. It suggests that the true inter-fund variances of Henriksson [9] 
timing and selectivity may both be close to zero. It also suggests a lower, 
more plausible value for the inter-fund variation in the upmarket beta. 

We have noticed that GLS estimates of variance can be very 
unstable in detail, and we have also shown that cross sectional studies 
can yield highly (even totally) dependent parameter estimates. 

If, as we suspect, the true Henriksson [9] selectivity and timing 
variances are close to zero, it would not be true to conclude for the 
Henriksson [9] model, as Coggin [5] concluded from meta-analysis of 
the Pfleiderer [17] model that "the best managers produced substantial 
risk adjusted excess returns". However even if there exists some true 
selectivity variance, and even if this is not offset by poor timing, it 
remains an open question whether differences in selectivity within any 
one period persist over successive time periods. 

 
1.   Discussion 

 
Why does our new analysis fail to detect true timing variation in the 
Henriksson [9] model? It may be that the Henriksson [9] model itself is 
not efficient at detecting timing. Pfleiderer [17] point out that the 
Henriksson [9] information specification is coarse, and Connor [7] offer 
relevant empirical evidence. It would be interesting to develop a version 
of our approach to make a comparable analysis for the Pfleiderer [17] 
model, though the problems seem formidable. This gap in our 
knowledge, and the many other gaps in Table 6, offer considerable 
scope for further theory and comparative work, as well as for 
replications in different time periods, in bull and bear markets etc.. 
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Table 6 
Summary of comparative results (All are GLS estimates) 

 
 Lee [14], 

Coggin [6] 
Coggin [5] Armada [3] 

Mean values of selectivity    
Selectivity Treynor [21]  0.000422 -0.0001 

Selectivity Henriksson [9]   0.0006 
Selectivity Pfleiderer [17] revised 0.000811 0.000339  

Mean values of timing (parameter levels are 
not comparable between models)    

Timing Treynor [21]  -0.279925  
Timing Henriksson [9]   -0.077 

Timing Pfleiderer [17] revised -0.084774 -0.046979  
Correlations of selectivity and timing    

Treynor [21]  -0.45 -0.57 
Henriksson [9]   -0.87 

Pfleiderer [17] original 0.47  0.486 
Pfleiderer [17] revised -0.62 -0.44  

Observed total meta variations of selectivity 
parameters (between funds)    

Selectivity Treynor [21]  0.000007 0.000006 
Selectivity Henriksson [9]   1.33604E-05 

Selectivity Pfleiderer [17] revised 0.000034 0.000007  
Estimated "true" variations of selectivity 
parameters (between funds)    

Meta true Variance of selectivity Treynor [21]  0.000004  
H-A true Variance of selectivity Treynor [21]    

Meta Variance of selectivity Henriksson [9]   0.000002 
H-A Variance of selectivity Henriksson [9]   0.000003 

Meta Variance of sel. Pfleiderer [17] revised 0.000022 0.000003  
Variations of timing parameters (between funds) Note: as the timing parameters are 
not comparable between Models, results are grouped per model 
Treynor [21] model    

Gross variation of timing Treynor [21]  0.403226  
Meta-analysis of true timing  0.345976  
H-A analysis of true timing    

Henriksson [9] model    
Gross variation of timing Henriksson[9]: 

(Y in 4a)   0.02342799 

Meta-analysis of true timing   0.00795527 
H-A analysis of true timing   -0.00001804 

Revised Pfleiderer [17] model    
Gross variation of timing Pfleiderer [17] 0.038888 0.011027  

Meta-analysis of true timing 0.028776 0.002941  
H-A analysis of true timing    
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The argument as to whether true variances in timing or selectivity 
exist in any sample, and truly persist over successive samples, can also 
be addressed by more conventional methods. Both traditional meta-
analysis and our own method make a quantified estimate of the 
percentage of "true" variation, in the total observed variation of 
selectivity or timing. Under suitable assumptions, this predicts the 
"signal to noise" ratio in the selectivity or timing performance of the 
average manager. From this basis it is a problem in regression theory to 
predict what percentage of a given fractile of selectors or timers in one 
sample is expected to survive in the same fractile, in a second or later 
sample (such survival rates should be smaller in the noisy Henriksson 
[9] model than in the less noisy Pfleiderer [17] model). 

Such a procedure could provide a test of whether persistently 
superior selectors and timers do exist, in the proportions that Coggin [5] 
suspect, as against a null hypothesis that true selectivity and timing are 
zero on average, and vary randomly, if at all, between successive time 
periods. We have made a preliminary survey of this type on our 
Henriksson [9] data, and found a correlation of approximately zero 
between the estimated selectivity or timing of each manager in two 
successive periods. This appears to support the null hypothesis against 
traditional meta-analysis, at least for the Henriksson [9] estimates, but 
the problems of interpretation are great. 

An interesting feature of this approach is that it might be possible 
to prove that consistently successful stock selectors or timers exist in 
general, but hard to identify them as individuals. Coggin [5]'s statement 
that "the best equity pension fund managers delivered substantial risk 
adjusted excess returns" does not imply its converse, namely that the 
managers who delivered substantial risk adjusted excess returns in the 
Coggin [5] sample were the "best" managers (in long term expectation). 
If there is a hypothetical "true" best decile of selectors in long term 
expectation, the fact that there is a fairly high signal to noise ratio 
according to Coggin [5] or ourselves, implies that the "true long term" 
best decile of selectors have a fairly modest probability of appearing 
among the top decile of selectivity performers in any one sample, and a 
negligible probability of doing so in every sample. Interesting problems 
of sample design therefore arise, for testing any specific hypothesis on 
the true variances or persistences of selectivity and timing. 
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Leaving aside the problem of the variances of selectivity and 
timing for a moment, the problem of their means remains. Why does 
selectivity tend to be positive on average, and timing negative, for many 
models, and in more than one market, and for more than one type of 
manager? 

Explanations could be substantive or artefactual. We suspect a 
bias by some researchers towards hypotheses that successful selectivity 
is substantive, and that apparently unsuccessful timing is an artifact. 
This is encouraged by the rumoured success of automatic trading 
systems (such success, if not correlated with market movements, will be 
estimated by the Henriksson [9] and Pfleiderer [17] models as 
selectivity). The fact that managers are willing to invest large sums in 
company analysis, in an otherwise almost efficient market, is further 
circumstantial evidence in favour of true selectivity. We know of little 
work on more pessimistic or artifactual hypotheses. 

Ultimately, however, the means of selectivity and timing must be 
less interesting than their variances. Correctly defined selectivity and 
timing profits must sum (and also average) to zero across all players in 
all financial markets (including occasional players, and all market 
entrants and leavers during the sample period). Suitably measured 
selectivity and timing abilities should therefore also average to zero 
across all players, subject to estimation artifacts and sampling bias. 

If a truly unbiased measurement method reports a non-zero mean 
for selectivity or timing, this might arise from sampling variation, or 
because the sample is biased towards investors who share advantages 
or disadvantages (shared bias should of course bias downwards the 
observed variances of the abilities). Samples of professional fund 
managers, and particularly from the largest funds, may well share 
economies of scale in collecting and processing information or 
transactions, or hiring superior managers, or implementing automatic 
trading systems. Some financial institutions might, in contrast, benefit 
more from scale economies in marketing and administration rather in 
financial performance itself. 

Even if both selectivity and timing have true global means of zero, 
as theory requires, and also have finite-sample means of zero (which 
theory does not require), successful individual timers and/or selectors 
can still exist, provided the true variances of selectivity and timing are 
positive (i.e. some players win better than randomly off others, within 
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the sample, in a zero sum game). The successes may or may not be 
longitudinally persistent over time. Our present results suggest that the 
true variances of ability between managers are probably small, and of 
low persistence between samples. However any true exceptions must be 
rare and small, if they are to have escaped universal recognition and 
elimination. A time-persistent variance need not be large to have a 
significant impact on the investors concerned. The true variances (and 
covariances) of selectivity and timing therefore remain keenly 
interesting, and as Coggin [5] remarked, a "fertile area" for theoretical 
and empirical study. 

 
NOTES 

 
1. Professor Charles Ward has told us verbally of high negative 

correlation when the Henriksson [9] model is used on Japanese 
market data. 

2. This assumption is easily relaxed in the generating model, though 
it can pose difficulties for estimation. We model unavoidable 
empirical correlation between estimates of these components in 
equation (12). 

3. Again this assumption is easily relaxed; we were surprised when 
our empirical data later appeared to violate this independence 
assumption, as explained below. 

4. The foregoing structure departs from equation (1) by omitting 
variables X(t) and Y(t). In an existing empirical sample, an 
observed value of X(t) or Y(t) acts only as a scaling constant, which 
relates a regression coefficient to an element of monthly return. 
The scaling effect is allowed for later. 

5. The notation in equations (15) to (17) below is not related to that 
for (1) above, so that no relationship is implied between X, Y and Z 
in (15) to (17) and X(t) and Y(t) in (1). 

6. This requires non zero X, which always true in empirical work; 
similarly for Y and Z. 

7. The use of X(t)2 and Y(t)2 as scaling constants assumes, as 
regression estimation itself does, that within any estimation sample 
the values of the beta coefficients are the random variables, and are 
conditional on constant, i.e. accurately observed, vector values of 
the independents X(t) and Y(t). The underlying statistical 
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generating model assumes the opposite, namely that the beta 
parameters are fixed, and the independent vectors variable. We call 
the observables X, Y, Z and their correlations the "input" 
parameters, and the estimated values of A, k, B1, B2, E1 and E2 the 
"output" parameters. This is the input-output sequence of 
calculation, which reverses the assumed causal sequence. 

8. The term "degree of freedom" is used here in the sense of possible 
joint variation by parameters, not in the sense of the statistical 
sample size for a parameter. A parameter set with "one degree of 
freedom" in this sense is simply a scalar variable, perhaps in 
disguise, but there may be any number, from zero to infinity, of 
sampling degrees of freedom - i.e. of linearly independent sample 
points - available to estimate this scalar 
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APPENDIX 
 

The effect of adding an explicit error term to the model of (14) 
 
Assume an error term e of variance E added to total investment 
performance, so that the variance of total return t is A + B1+ B2 + E. 
Assume that this error term disturbs the estimate of b1 so that: 
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Comparison with (14) shows the covariations have the expected 

pattern of positive and negative signs, and all of the other coefficients 
(except for k which is artifactual) are reduced in size by the presence of 
E. However E cannot be identified from the set of six equations in seven 
unknowns that are obtained by equating the above matrix to the 
estimated variance-covariance matrix of the regression coefficients. 
 


